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ABSTRACT
The wastewater treatment landscape in Central Europe, particularly in Poland, has undergone a profound trans-
formation due to European Union (EU) integration. Fueled by EU funding and rapid technological advance-
ments, wastewater treatment plants (WWTPs) have adopted cutting-edge control methods to adhere to EU Water 
Framework Directive mandates. WWTPs contend with complexities such as variable flow rates, temperature 
fluctuations, and evolving influent compositions, necessitating advanced control systems and precise sensors to 
ensure water quality, enhance energy efficiency, and reduce operational costs. Wastewater mathematical model-
ing provides operational flexibility, acting as a virtual testing ground for process enhancements and resource 
optimization. Real-time sensors play a crucial role in creating these models by continuously monitoring key 
parameters and supplying data to predictive models. These models empower real-time decision-making, result-
ing in minimized downtime and reduced expenses, thus promoting the sustainability and efficiency of WWTPs 
while aligning with resource recovery and environmental stewardship goals. The evolution of WWTPs in Central 
Europe is driven by a range of factors. To optimize WWTPs, a multi-criteria approach is presented, integrating 
simulation models with data mining methods, while taking into account parameter interactions. This approach 
strikes a balance between the volume of data collected and the complexity of statistical analysis, employing 
machine learning techniques to cut costs for process optimization. The future of WWTP control systems lies in 
“smart process control systems”, which revolve around simulation models driven by real-time data, ultimate-
ly leading to optimal biochemical processes. In conclusion, Central Europe’s wastewater treatment sector has 
wholeheartedly embraced advanced control methods and mathematical modeling to comply with EU regulations 
and advance sustainability objectives. Real-time monitoring and sophisticated modeling are instrumental in driv-
ing efficient, resource-conscious operations. Challenges remain in terms of data accessibility and cost-effective 
online monitoring, especially for smaller WWTPs.
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INTRODUCTION

After joining the European Union (EU), Po-
land and several other Central European nations 
embarked on a monumental transformation of 
their wastewater treatment plants (WWTPs). This 
extensive overhaul extended beyond equipment 
and device replacement, incorporating cutting-
edge technological solutions that epitomized the 
forefront of wastewater treatment innovation. 
This ambitious modernization initiative found its 
impetus in a dual force – the availability of EU 
funding opportunities and the rapid evolution of 
pioneering projects and technologies within the 
wastewater treatment sector. Consequently, this 
catalyzed the adoption of state-of-the-art con-
trol methods in WWTPs, not confined to Poland 
but cascading across neighboring nations in the 
region. This shift carries immense significance, 
chiefly in its imperative to align with and satisfy 
the rigorous mandates delineated in the European 
Union Water Framework Directive [European 
Commission, 2023]. 

The operation of wastewater treatment plants 
inherently unfolds within a complex realm, sus-
ceptible to a myriad of external and internal dis-
ruptions. These disruptions, characterized by 
variable flow intensity, temperature fluctuations, 
dynamic concentration levels, and fluctuating in-
fluent compositions, underscore the pressing need 
for specialized solutions in this domain [Revol-
lar et al., 2017]. Consequently, the adoption of 
increasingly sophisticated measurement devices, 
complemented by advanced control and automa-
tion systems, has emerged as a pivotal aspect of 
modern wastewater treatment processes [Chauhan 
et al., 2022]. This step is not solely geared towards 
meeting stringent wastewater quality standards; it 
is equally driven by the pursuit of heightened en-
ergy efficiency and the curtailment of operational 
costs. In recent times, the wastewater treatment 
landscape has undergone a profound transforma-
tion driven by the visionary principle of “self-suf-
ficiency”. This paradigm shift places a strong em-
phasis on extracting biogenic and other valuable 
chemical compounds from wastewater [Battista 
et al., 2020], transcending the constraints of con-
ventional treatment approaches. It has introduced 
the innovative concept of “Water Resource Re-
covery Facilities” [Zhang et al., 2020], redefining 
the objectives of wastewater treatment to not only 
purify water but also recover valuable resources. 
At the heart of this transformative journey lies 

the growing reliance on wastewater mathematical 
modeling. This powerful tool allows wastewater 
treatment facilities to operate with unprecedent-
ed precision, optimizing processes, conserving 
resources, and achieving sustainable outcomes. 
Wastewater mathematical modeling entails the 
creation of intricate mathematical representations 
of the treatment processes, taking into account the 
myriad variables that influence wastewater com-
position and quality. 

The integration of real-time sensing, data anal-
ysis, and dependable online parameter control, all 
facilitated by mathematical models, has become 
integral to contemporary wastewater treatment 
systems. Real-time sensors continuously moni-
tor key parameters such as flow rates, chemical 
concentrations, and water quality indicators. This 
data is then fed into sophisticated mathematical 
models that predict how the treatment processes 
will respond to changing conditions. These pre-
dictions empower operators to make informed 
decisions in real-time, adjusting treatment param-
eters and chemical dosages as needed to maintain 
optimal performance. One of the primary advan-
tages of wastewater mathematical modeling is its 
ability to anticipate and mitigate significant pro-
cess fluctuations and malfunctions. By simulating 
different scenarios and predicting potential is-
sues, operators can proactively address problems 
before they escalate, minimizing downtime and 
costly repairs. This predictive capability is cru-
cial for ensuring the reliability and efficiency of 
wastewater treatment plants.

Moreover, wastewater mathematical model-
ing enhances the dexterity of technological op-
erations. It provides a virtual testing ground for 
experimenting with process improvements and 
optimizing resource utilization. This means that 
wastewater treatment plants can continually fine-
tune their operations to achieve the highest levels 
of efficiency and sustainability. In essence, the 
integration of wastewater mathematical modeling 
represents a significant leap forward in the field of 
wastewater treatment. It empowers treatment fa-
cilities to not only meet regulatory requirements 
but also extract valuable resources from wastewa-
ter, thereby aligning with the principles of sustain-
ability and self-sufficiency. As this transformative 
paradigm continues to gain momentum, wastewa-
ter mathematical modeling will remain an indis-
pensable tool in shaping the future of wastewa-
ter treatment, ensuring that these systems reach 
their full potential in terms of efficiency, resource 
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recovery, and environmental stewardship [Solon 
et al., 2017; Sabba et al., 2023]. The evolution of 
wastewater treatment practices in Central Euro-
pean countries, subsequent to their EU accession, 
reflects a dynamic process propelled by a conflu-
ence of external and internal factors. The relent-
less pursuit of excellence in wastewater treatment 
has triggered a profound shift in focus, center-
ing on sustainability, resource recovery, and op-
erational efficiency. This transformative journey 
underscores the pivotal role of advanced control 
systems, real-time monitoring, and wastewater 
mathematical modeling as bedrock elements in 
shaping the future of wastewater treatment within 
the region. The use of simulation software and 
optimization procedures for designing technolog-
ical systems is expected to become increasingly 
prevalent in the near future, rendering simple cal-
culation software obsolete. In this paper previous 
and current control systems employed in WWTPs 
were reviewed, and a multi-criteria approach 
of an integrated system for the optimization of 
WWTP operation was also presented. 

OPTIMIZATION AND CONTROL 
METHODS FOR WASTEWATER 
TREATMENT PLANTS: INSIGHTS 
THROUGH MATHEMATICAL MODELING 
AND COMPUTER SIMULATIONS

Continuous progress in the field of mathemat-
ical modeling of biochemical processes related 
to wastewater treatment has led to the develop-
ment of comprehensive activated sludge models 
(ASM). Among the ASM models, ASM1 stands 
out as the most notable, providing a framework 
for understanding the removal of carbon and ni-
trogen compounds in wastewater. Subsequent 
models, including updated versions like ASM2 
and modifications like ASM2d or ASM3, have 
been introduced [Henze et al., 2000]. These 
models have become instrumental in optimizing 
wastewater treatment processes, especially in 
the context of Central Europe, and particularly 
in Poland, where their adoption has been rapidly 
increasing, driven by various objectives outlined 
earlier. Both mathematical modeling and comput-
er simulation methods hold immense potential to 
make substantial contributions to the design, op-
eration, and optimization of wastewater treatment 
processes, ultimately leading to the development 

of highly efficient wastewater treatment systems. 
However, it’s essential to recognize that the ex-
tent and application of these methods can vary 
significantly based on their intended purposes and 
the specific needs of each wastewater treatment 
facility [Mąkinia et al., 2002; Brdys et al., 2008; 
Piotrowski et al., 2023].

Hauduc et al. [2009] have shed light on the 
multifaceted roles that ASM models predomi-
nantly serve. These models are primarily em-
ployed for process optimization (59%), process 
design (42%), and forecasting corrective mea-
sures for wastewater treatment processes (21%). 
The diverse goals and applications of these mod-
els hinge on the preferences and requirements of 
the users. In Europe, these models find their pri-
mary utility among scientists engaged in research 
endeavors aimed at optimizing process efficiency 
and energy consumption. On the other hand, in 
North America, particularly in the United States 
and Canada, private companies primarily employ 
ASMs for process design [Mazurkiewicz, 2016].

Notably, private enterprises have recently in-
troduced novel models and treatment technologies 
with a common overarching objective: enhancing 
the sustainability of wastewater treatment pro-
cesses [Sabba et al., 2017; Cerruti et al., 2021]. 
Concurrently, advancements in information tech-
nology and the rapid enhancement of computa-
tional capabilities within available hardware have 
paved the way for the application of more sophis-
ticated computational tools in the optimization of 
biochemical processes, particularly those rooted 
in activated sludge systems [Drewnowski and 
Szeląg, 2020]. This transition is driven not only 
by formal and legal requirements, such as the ne-
cessity to conduct simulation studies during the 
process design phase employing appropriate data 
acquisition and processing methods but also by 
economic factors, including the decreasing costs 
of hardware and software [Mazurkiewicz, 2016]. 

Presently, more than three decades after 
the groundbreaking publication by Henze et 
al. [1987], the ASM1 model continues to stand 
as the standard for describing activated sludge 
processes [Gernaey et al., 2004; Mąkinia, 2010; 
Khalaf et al., 2021]. It serves as a reference point 
for a multitude of scientific and practical projects, 
often being adapted or extended within commer-
cially available software packages like GPS-X, 
WEST, SUMO, BIOWIN, DESASS, AQUASIM, 
and SIMBA [Rieger et al., 2013; Kirchem et al., 
2020; Nadeem et al., 2022]. These software tools 
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are widely used for modeling and simulating the 
operations of wastewater treatment plants, with a 
particular focus on nitrogen removal [Copp, 2002; 
Eldyasti et al., 2011; Cao et al., 2021]. This is fur-
ther evidenced by the extensive adoption of these 
models across various platforms [Mąkinia, 2010; 
Jafarinejad, 2020], as well as by the research 
findings in Hauduc et al. [2009] and Henze et al. 
[2000]. Consequently, for modeling purposes, the 
biokinetic ASM1 model [Henze et al., 1987] is 
employed in 57% of cases, while ASM2d [Henze 
et al., 1999] is utilized in 32% of cases. Recently, 
ASM3 [Gujer et al., 1999] has gained comparable 
popularity among all stakeholders, including sci-
entists, local authorities, and the commercial in-
dustry. Additionally, ASM2d and TUD [Smolders 
et al., 1995], as well as New General [Barker and 
Dold, 1997], have garnered widespread adoption, 
particularly among governmental organizations, 
spanning regions like the United States, Cana-
da, Switzerland, as well as several EU countries 
such as the Netherlands, Germany, and Belgium. 
These models collectively represent a robust tool-
kit for addressing the complexities and challenges 
inherent in wastewater treatment processes, of-
fering valuable insights and solutions for a more 
sustainable and efficient future in the wastewater 
treatment sector.

USE OF DATA MINING METHODS 
FOR MODELING WASTEWATER 
TREATMENT PLANTS

In addition to the mechanistic models dis-
cussed earlier, statistical models employing data 
mining methods can also be utilized for modeling 
wastewater treatment processes. In this approach, 
models are constructed based on long-term mea-
surement series that encompass the quality of 
wastewater at the outlet, the quality of waste-
water at the inlet, and operational parameters of 
the bioreactor. Data mining represents a set of 
data analysis techniques aimed at extracting and 
organizing knowledge from raw data. It encom-
passes various computational methods, including 
the computation of descriptive statistics, explo-
ration of multivariate data, and the use of linear 
models such as time series analysis. Addition-
ally, data mining involves data visualization tech-
niques, artificial intelligence, and machine learn-
ing models [Gorunescu, 2011; Scott-Fordsmand 
and Amorim, 2023]. The process of knowledge 

discovery in databases can be outlined as follows: 
(1) selection of the dataset to be analyzed, which 
may involve working with a subset of raw data; 
(2) dataset preparation, including data cleaning 
and addressing missing data through imputation; 
(3) dimensionality reduction and data transfor-
mation; (4) splitting of the data to learning, test 
and optionally validation sets; (5) application of 
the chosen data mining technique; (6) interpreta-
tion and evaluation of the correctness of the re-
sults obtained, with the possibility of revisiting 
earlier steps; (7) implementation of the acquired 
knowledge. The individual steps of the process 
are shown in Figure 1 [Fayyad et al., 1996; Mi-
raftabzadeh et al., 2023].

Artificial intelligence plays a role in devel-
oping systems designed to achieve intelligence 
equal to or even surpassing that of humans. Con-
sequently, AI, by certain definitions, is associated 
with the notion of behaving or thinking rationally 
to mitigate human systematic errors [Russell and 
Norvig, 2010]. This is further reinforced by the 
fact that machine learning is employed to create 
precise regression or classification models, posi-
tioning this scientific domain as an integral com-
ponent of artificial intelligence. The fundamental 
categorization of machine learning models falls 
into two main groups: supervised and unsuper-
vised models. In unsupervised learning, the de-
pendent variables play no role in constructing the 
model, while supervised learning involves the 
inclusion of output variables within the model 
domain. In supervised learning methods, the pro-
cess of model creation occurs in two stages: in 
the initial stage, the model’s parameters are esti-
mated using the learning dataset, and in the sub-
sequent stage, the model is tested using the test 
dataset [Hastie et al., 2009]. This latter stage is 
crucial for assessing the predictive capabilities 
of the mathematical model under development. 
In more contemporary learning scenarios, addi-
tional model types have emerged, including semi-
supervised learning. In semi-supervised learning, 
the learning process involves observations with 
known information about the dependent vari-
able alongside those for which this information is 
missing, with predictions made during the learn-
ing process [Mohri et al., 2018]. A diverse range 
of machine learning methods has been employed 
for modeling wastewater treatment plants. These 
methods encompass multiple regression and its 
variations, such as MARS (Multivariate Adap-
tive Regression Splines), neural networks and 
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their adaptations, fuzzy models, and regression 
tree methods and their enhancements [Güçlü and 
Dursun, 2010; Abba and Elkiran, 2017; Santín et 
al., 2018]. In the realm of regression tree models, 
improvements have been achieved through the 
introduction of methods such as random forests 
or gradient boosting. These modifications have 
significantly enhanced the predictive capabilities 
of the regression tree model [Zhou et al., 2019; 
Wang et al., 2022; Wodecka et al., 2022]. The ran-
dom forest model has also found utility in classifi-
cation tasks, demonstrating nearly flawless accu-
racy when categorizing observations into the rele-
vant stages of wastewater treatment [Piłat-Rożek 
et al., 2023]. An illustrative instance is provided 
by the publication of Szeląg et al. [2020], which 
serves as an exemplar of constructing a sludge 
bulking simulation model within WWTP using 
a range of machine learning models, including 
random forest, boosted trees, support vector ma-
chine, multilayer perceptron neural networks, and 
logistic regression.

A critical phase in the development of a statis-
tical model for modeling processes within waste-
water treatment plants is the performance of sen-
sitivity analysis and simulation analyses. These 
analyses aim to evaluate the impact of alterations 
in the numerical values of input data on simulation 
outcomes. This aspect is of utmost importance as 
the developed model must accurately reflect the 

influence of selected independent variables and 
bioreactor operational parameters on the quality of 
sewage at the wastewater treatment plant’s inflow.

ADVANCEMENTS IN WWTP CONTROL 
SYSTEMS AND DEVELOPMENT OF 
MATHEMATICAL MODELS BASED ON 
EMERGING TREATMENT TECHNOLOGIES

In the 21st century, mathematical models have 
continued to evolve, with the introduction of inno-
vative tools such as ASDM and Mantis [Elawwad 
et al., 2019; Moragaspitiya et al., 2019; Mu’azu et 
al., 2020]. Initially, these models found primary 
usage in governmental organizations and private 
companies, rather than scientific research units. 
However, recent years have witnessed an expan-
sion of research efforts focused on discovering 
novel methods for nitrogen removal from waste-
water. This research aims to reduce treatment costs 
and has led to the modification of standard ASM 
models into more intricate frameworks that in-
corporate anammox bacteria and other emerging 
nitrogen metabolisms, exemplified by Mantis2 
[Faris et al., 2022; Mehrani et al., 2022a; Pryce et 
al., 2022]. These methodologies are rooted in the 
partial nitrification (nitritation) and anammox pro-
cesses depicted in Figure 2 [Sobotka et al., 2018; 
Drewnowski et al., 2021]. Notably, while the 

Figure 1. Individual steps comprising the process of knowledge discovery in databases
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anammox process is commonly found in natural 
environments such as oceans [Arrigo, 2005], it was 
only discovered in the late 1990s [Jetten, 1998; 
Strous, 1999a; Strous, 1999b]. Most of the previ-
ous studies mainly focused on ammonia-oxidizing 
microorganisms, while ignoring the important role 
of nitrite-oxidizing microbes (Meng et al., 2017; 
Gao et al., 2018; Zhang et al., 2018). Results of 
recent studies show that in addition to ammonia 
oxidation activity, activated sludge exhibits strong 
nitrite oxidation activity that has to be taken into 
consideration (Lu et al., 2021). In wastewater treat-
ment systems involving anammox, suppression of 
the growth of nitrite-oxidizing bacteria (NOB) is 
one of the most important determinants of highly 
efficient nitrogen removal [Lotti et al., 2014]. Co-
occurrence of NOB oxidizing NO2

- to NO3
- under 

aerobic conditions with anammox bacteria may 
lead to rapid consumption of nitrite by NOB. As 
a result, due to an insufficient supply of NO2

-, the 
growth of anammox bacteria will be restricted [Ma 
et al., 2015]. This becomes a serious problem be-
cause controlling the growth of NOB is not an easy 
task, especially during simultaneous nitritation and 
anammox processes [De Clippeleir et al., 2011; 
De Clippeleir et al., 2013].

The concept of the nitrite (NO2
-) shunt is 

rooted in inhibiting the nitrification process at the 
NO2

- stage by suppressing the growth of bacte-
ria responsible for oxidizing NO2

- to NO3
- (i.e. 

NOB) [Cerruti et al., 2021]. This strategy aims 
to reduce costs associated with aeration during 
the nitrification process and the expense of add-
ing organic carbon during denitrification carried 

out by ordinary heterotrophic organisms (OHO). 
By converting ammonia nitrogen into NO2

-, it 
reduces oxygen demand by approximately 25%, 
and the conversion of NO2

- to nitrogen gas (N2) 
decreases the demand for organic carbon by about 
40% [Roots et al., 2020].

The Anammox process (Anaerobic Ammoni-
um Oxidation) involves the removal of nitrogen 
compounds from wastewater using autotrophic 
microorganisms known as Planctomycetales. 
These bacteria, known as anaerobic ammonia-ox-
idizing bacteria (AnAOB), convert ammonia and 
NO2

- (in a ratio of 1:1.3) into N2 (approximately 
90%) and NO3

- (around 10%) without requiring 
an external source of organic carbon. Conse-
quently, the anammox process proves especially 
useful for nitrogen removal from wastewater with 
a low BOD5:N ratio, which often arises in water 
from sludge dewatering processes after anaerobic 
digestion [Kaewyai et al., 2022]. Deammonifica-
tion combines nitritation and anammox and can 
be executed as a single-step process in SBRs (e.g., 
the DEMON process) [Wett, 2007; Podmirseg et 
al., 2022] or in hybrid systems (e.g., AnitATM Mox 
process) [Christensson et al., 2011; González-
Martínez et al., 2021]. As mentioned above, de-
ammonification offers significant advantages, 
including reduced electrical energy consumption 
for aeration (by approximately 60%), decreased 
excess sludge production (by about 90%), elimi-
nation of the organic carbon requirement, and 
substantial reduction in CO2 emissions into the at-
mosphere (by over 90%) [Al-Hazmi et al., 2021]. 
Another recently discovered process found in the 

Figure 2. The nitrite (NO2
-) shunt and anammox as well as comammox 

processes in relation to the conventional nitrification/denitrification
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nitrogen cycle is known as Comammox, which 
stands for Complete Ammonia Oxidation. The 
main idea behind the process is the conversion of 
ammonia to NO3

- (traditionally carried out in two 
stages) by a single group of microorganisms re-
ferred to as complete ammonia-oxidizing bacteria 
(CAOB). In 2015, microorganisms of the genus 
Nitrospira were found to have the capacity for 
such conversion, and shortly thereafter a species 
of Nitrospira inopinata was isolated in pure cul-
ture. It is anticipated that complete nitrifiers could 
prove very useful in engineering systems, such as 
wastewater treatment plants, creating new op-
portunities for nitrogen removal from wastewater 
[Maddela et al., 2022]. The occurrence of Nitro-
spira inopinata has been confirmed in activated 
sludge reactors, moving-bed biofilm reactors, hy-
brid biofilms or side stream wastewater [Lu et al., 
2020]. In artificial systems, comammox bacteria 
coexist together with other microorganisms. Wu 
et al. [2019] studied the possibility of removing 
ammonia nitrogen from sludge digester liquor as 
a result of the simultaneous partial-nitrification, 
anammox and comammox processes obtained in 
an SBR reactor. The solution turned out to be not 
only technologically effective (more than 98% re-
moval efficacy) but also economically efficient. 
Another aspect of the issue was pointed out in 
a study conducted by Kits et. al [2019]. It was 
shown that during nitrification, complete nitrifiers 
can produce less N2O (which is a greenhouse gas) 
compared to ammonia-oxidizing bacteria (AOB) 
responsible for nitritation. Comammox is also be-
ginning to be reflected in modeling studies. Meh-
rani et al. [2022b] using data from the nitrifica-
tion process in SBRs expanded the ASM1 model 
matrix to include, among other things, two-step 
nitrification (based on Mantis2) and also the co-
mammox, which enabled a better representation 
of the processes taking place.

Increasingly, mathematical computer-based 
models are being utilized for wastewater treat-
ment processes to predict various technological 
options, facilitating the identification of optimal 
solutions such as the aforementioned NO2

- shunt 
method and reductions in aeration costs. Aeration 
constitutes the most energy-intensive process in 
wastewater treatment plants [Gu et al., 2023], of-
ten exceeding 50% of total energy consumption 
[Drewnowski et al., 2019]. Most current aeration 
systems rely on measuring oxygen concentrations 
in the nitrification tank for control. While this ap-
proach effectively maintains a consistent oxygen 

concentration for adequate wastewater treatment, 
it tends to be inefficient in terms of energy, espe-
cially when influent pollutant loads fluctuate sig-
nificantly. This situation calls for the adoption of 
more advanced aeration control processes based 
on online measurements of nitrogen compounds 
[Åmand et al., 2013]. This has become feasible 
with the development of more reliable ammonia 
(NH4

+) and nitrite/nitrate (NOx) probes [Åmand 
et al., 2013]. In the Ammonia-Based Aeration 
Control (ABAC) system, the regulation of oxy-
gen concentration is rooted in NH4

+ concentration 
measurements. ABAC offers two control methods 
based on the location of NH4

+ concentration mea-
surement: feedback control, when measured at the 
nitrification tank outlet, and feedforward control, 
at the inlet of the nitrification tank. ABAC-based 
regulation results in significant energy savings 
(approximately 10-20%) and improved denitri-
fication with reduced consumption of alkalinity 
and organic carbon. While feedforward control 
is more complex, it still ensures compliance with 
wastewater quality standards with lower energy 
consumption. The Ammonia vs. Nitrate/Nitrite 
Control (AVN) system was initially developed 
for treatments involving shortened nitrification 
to eliminate the second nitrification step (oxida-
tion of NO2

- to NO3
-) [Al-Omari et al., 2015]. 

Additionally, the application of AVN controls 
may enhance nitrogen removal efficiency in con-
ventional nitrification-denitrification processes 
[Regmi et al., 2022]. Adjustment of the NO3

- load 
for denitrification is achieved by configuring spe-
cific concentrations and NH4

+ to NOx ratios at the 
outlet [Mehrani et al., 2022b].

Electronic nose systems, due to the gas sen-
sors employed in them, are used to analyze and 
classify gas mixtures and, in particular, distin-
guish between components present in a given 
mixture [Piłat-Rożek et al., 2023]. Multivariate 
data from the sensors also allow prediction of 
parameters related to wastewater quality such as 
COD, ammonia nitrogen (AN), TN and TP [Wang 
et al., 2023] or other environmental parameters 
associated with air and odor pollution [Guz et al., 
2015]. Monitoring of wastewater treatment plants 
is one of the future applications of e-noses as 
they can be used to classify samples from differ-
ent stages of treatment [Piłat-Rożek et al., 2023] 
and identify sources or assess concentration of 
the odors [Giuliani et al., 2012]. Since gas sen-
sor arrays enable the differentiation of contami-
nants, electronic noses can be employed to detect 
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unusual situations in wastewater treatment plants 
that may lead to failures [Bourgeois et al., 2003]. 
These anomalies can be distinguished from the 
normal operation of wastewater treatment plants 
using supervised learning algorithms. Described 
system can also be applied in fast and cheap es-
timation of treated wastewater and used for man-
aging and control processes occurring in WWTP 
devices [Guz et al., 2015; Łagód et al., 2022].

The ongoing developments in mathematical 
modeling and its application in wastewater treat-
ment have led to groundbreaking advancements. 
Emerging methodologies like the NO2

- shunt and 
the utilization of advanced control systems have 
the potential to revolutionize wastewater treat-
ment processes, making them more efficient, 
cost-effective, and environmentally friendly. 
These innovations mark a significant step toward 
achieving sustainability in wastewater treatment, 
addressing both economic and environmen-
tal concerns. As research continues to push the 
boundaries of what is possible in this field, the 
future of wastewater treatment holds promise for 
more efficient and sustainable practices.

BALANCING ECONOMIC AND 
ECOLOGICAL ASPECTS: A MULTI-
CRITERIA APPROACH TO OPTIMIZE 
WASTEWATER TREATMENT 
PLANT OPERATIONS

The future of control systems in WWTPs is 
moving towards what is commonly referred to as 
“smart process control systems”. These systems 
will primarily feature a simulation model imple-
mented within computer software, complete with 
suitable algorithms for controlling biochemical 
processes. The success of these systems relies on 
real-time measurements taken at selected points 
within a bioreactor. Unfortunately, this approach, 
which falls under the country’s priorities, does 
not adequately address environmental concerns 
related to greenhouse gas emissions reduction. 
WWTPs have been identified as contributors to 
greenhouse gas emissions [Daelman et al., 2013; 
Zaborowska et al., 2019; Szeląg et al., 2023], es-
pecially during biological nitrogen removal pro-
cesses [Sabba et al., 2018]. Furthermore, critical 
aspects such as optimizing the selection of sam-
ple collection points within the WWTP, acquir-
ing measurement data for model calibration, and 

considering the interactions between calibrated 
kinetic parameters have often been overlooked 
[Andraka et al., 2018]. The uncertainties associ-
ated with identified WWTP model parameters are 
not factored in during system construction, which 
can affect settings and simulation outcomes 
[Szeląg et al., 2022]. The procedures devised for 
calibrating and optimizing model parameters often 
involve iteratively adjusting parameter values un-
til a strong correlation between calculated results 
and measurements is achieved [Mąkinia and Za-
borowska, 2020]. However, this correlation does 
not always guarantee satisfactory results. Despite 
the significant influence of wastewater quality at 
the inlet on the chosen optimization strategies, 
there have been no efforts to establish a method-
ology for optimizing wastewater quality predic-
tion, accounting for the duration of the conducted 
studies. Consequently, the development and im-
plementation of these systems require multi-year 
and costly investigations, limiting their practical-
ity [Barbusiński et al., 2020; Szeląg et al., 2020]. 
In Figure 3, these aforementioned limitations are 
addressed and a methodology for designing an in-
tegrated system to optimize WWTP operations is 
presented [Drewnowski and Szeląg, 2020].

In the adopted approach, the assessment of 
WWTP operation is based on parameters such as 
wastewater quality at the outlet, energy consump-
tion, and greenhouse gas emissions. Simulation 
of these variables is performed using a mecha-
nistic model, specifically ASM. To determine the 
amount of measurement data and the number of 
experiments needed for model calibration, the de-
sign of experiments (DOE) method is employed 
[Barbusiński et al., 2021]. This method takes into 
consideration the number of parameters (both 
kinetic and stoichiometric) to be calibrated. To 
optimize the selection of parameters for analysis, 
a global sensitivity analysis is conducted. This 
helps identify and exclude kinetic and stoichio-
metric parameters that have a negligible impact 
on simulation results. Following this multi-cri-
teria approach and employing the DOE method, 
data are generated and optimized for use in a sta-
tistical model that predicts influent wastewater 
quality. This is a critical step as online wastewater 
quality measurements are often costly and can be 
a limiting factor in long-term WWTP optimiza-
tions [Borzooei et al., 2019; Newhart et al., 2019].

The adopted solution allows to find a bal-
ance between the amount of measurement data 
and the complexity of the statistical method used 
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to predict wastewater quality. Machine learning 
methods, including neural networks and their 
various adaptations, are utilized to achieve this, 
reducing measurement time and equipment op-
erating costs. The presented methodology also 
addresses uncertainty analysis using the GLUE 
method during model calibration [Mannina et 
al., 2010; Szeląg et al., 2022]. This uncertainty 
pertains to the interactions among identified pa-
rameters and their impact on simulation results. 
Furthermore, this approach enables the explo-
ration and analysis of the influence of various 
simplifications of wastewater quality indicators, 
with decisions based on the credibility of the 
obtained results. When the uncertainty is within 

permissible limits set by a technologist, simpli-
fied testing approaches can be considered. If not, 
additional tests are required. The analyses result 
in a model with the assumed accuracy, deter-
mined by multidimensional distributions of ki-
netic parameters using the GLUE method. There-
fore, by applying the developed statistical mod-
els for predicting influent wastewater quality, the 
calibrated WWTP model can estimate wastewa-
ter quality, energy consumption, and greenhouse 
gas emissions using the GLUE method, consid-
ering the interactions among calibrated param-
eters. The obtained results can exhibit variabil-
ity. To account for this variability, stoichiometric 
concepts are integrated into bioreactor settings 

Figure 3. Multi-criteria concept of an integrated system for optimization of WWTP operation
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during WWTP optimization. These settings are 
designed to ensure that the desired technologi-
cal outcomes are achieved at the lowest possi-
ble cost. This holistic and innovative approach 
promises to greatly transform WWTP operations, 
aligning them with sustainability goals and ad-
dressing the environmental challenges posed by 
greenhouse gas emissions.

CONCLUSIONS

The comparison of different WWTP opti-
mization systems confirms that there is a clear 
focus on improving wastewater quality and cut-
ting energy use. Despite advanced computational 
methods, Poland and Central Europe still prefer 
simpler tools like spreadsheets and control soft-
ware. Simulation, integrated software, and AI 
are underused in practical wastewater treatment, 
primarily serving research rather than operations. 
One significant obstacle to using computer mod-
els for WWTPs is the lack of comparative or op-
erational data needed for model calibration, vali-
dation, sensitivity assessment, and qualitative 
analysis. Gathering this data is time-consuming 
and costly. Nevertheless, computer models are 
increasingly used to predict various technologi-
cal approaches and identify optimal solutions. 
Recent studies show the adoption of technolo-
gies like NO2

- shunt and anammox processes in 
WWTPs, especially for the treatment of waste-
water with high nitrogen content.

Considering the growing complexity of 
NO2

- shunt compared to traditional processes, 
mathematical models and computer simula-
tions for WWTP control are expected to become 
more common. Thus, besides reviewing current 
WWTP control systems, this paper presents a 
multi-criteria approach to an integrated system 
for WWTP optimization. The application of sim-
ulation software and optimization procedures is 
likely to phase out simpler calculation software 
in medium and large WWTPs. These systems 
will involve complex integrated expert systems, 
real-time data collection and processing, and 
simultaneous optimization. In contrast, small 
WWTPs will adopt these changes more slowly, 
continuing to rely on conventional processes and 
traditional control software. Data processing will 
also remain offline due to the high cost of mea-
surement devices, making investments in online 
systems unfeasible.
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